Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis
نویسندگان
چکیده
Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the ice cover on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner ice covers and consequently, in a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of European remote sensing satellite ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake ice model were employed to determine the response of ice cover (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Given the large area covered by these lakes, changes in the regional climate and weather are related to regime shifts in the ice cover of the lakes. Analysis of available SAR data from 1991 to 2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in ice thickness simulated with the Canadian Lake Ice Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Observed changes of the ice cover show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22 % (α = 0.01). Model results indicate a trend toward thinner ice covers by 18–22 cm (no-snow and 53 % snow depth scenarios, α = 0.01) during the 1991–2011 period and by 21–38 cm (α = 0.001) from 1950 to 2011. The longer trend analysis (1950–2011) also shows a decrease in the ice cover duration by ∼ 24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7–18.6 days (α = 0.001).
منابع مشابه
Ice Freeze-up and Break-up Detection of Shallow Lakes in Northern Alaska with Spaceborne SAR
Shallow lakes, with depths less than ca. 3.5–4 m, are a ubiquitous feature of the Arctic Alaskan Coastal Plain, covering up to 40% of the land surface. With such an extended areal coverage, lakes and their ice regimes represent an important component of the cryosphere. The duration of the ice season has major implications for the regional and local climate, as well as for the physical and bioge...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملRangeland Degradation Assessment in the South Slope of the Al-Jabal Al-Akhdar, Northeast Libya Using Remote Sensing Technology
The degradation rate of Mediterranean steppes, especially in North Africa is 1% per year, and this considered a high rate of degradation. This study conducted in 2014 in the south slope of the Al-Jabal Al-Akhdar, northeast Libya to quantify the vegetation recovery rate and assess selected Vegetation Indices (VIs) for mapping rangelands degradation status using remote sensing technology. Throug...
متن کاملSatellite SAR Remote Sensing of Great Lakes Ice Cover, Part 2. Ice Classification and Mapping
During the 1997 winter season, shipborne polarimetric backscatter measurements of Great Lakes (freshwater) ice types using the Jet Propulsion Laboratory C-band scatterometer, together with surface-based ice physical characterization measurements and environmental parameters, were acquired concurrently with Earth Resource Satellite 2 (ERS-2) and RADARSAT Synthetic Aperture Radar (SAR) data. This...
متن کاملRadiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean
Recent climate modeling results point to the Arctic as a region that is particularly sensitive to global climate change (e.g., IPCC 1997). The North Slope of Alaska-Adjacent Arctic Ocean (NSA-AAO) Cloud and Radiation Testbed (CART) sites of the Atmospheric Radiation Measurement (ARM) Program are designed to collect data on temperature-ice-albedo and water vapor-cloud-radiation feedbacks are bel...
متن کامل